Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Chem ; 18(1): 63, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555428

RESUMO

In this research, a novel magnetic zirconium-based metal-organic framework (Fe3O4@SiO2@MIP-202, MMOF), was fabricated, fully characterized, and applied for the batch-mode solid phase extraction of trace amounts of Pd2+ ions from water and wastewater samples before its spectrophotometric detection. Pd2+ ions were desorbed from MMOF by nitric acid and were complexed by treating with KI solution to have a maximum absorbance at 410 nm. The synthesized MMOF composite showed a very large surface area (65 m2.g- 1), good magnetization (1.7 emu.g- 1) and a large pore volume (0.059 cm3.g- 1) with adsorption capacity of 194.5 mg of Pd2+ ions/g of the adsorbent. This nanosorbent boasts chemo-mechanical stability, high adsorption capacity due to its vast active sites, and facile recovery facilitated by its magnetic properties. Parameters affecting the extraction efficiency of the method were optimized as pH of the sample 7.4, volume of the sample 25 mL, 15 mg adsorbent, 1 mL of 0.1 M HNO3 eluent, with 10 and 15 min as the extraction and desorption times, respectively. The calibration curve was found to be linear across the 10.0-1500.0 µg.L- 1 range with a limit of detection of 1.05 µg.L- 1. The obtained extraction efficiency and enrichment were 98% and 245, respectively. The total analysis time was less than 30 min. This MMOF has never been used for the extraction of Pd2+ ions before.

2.
Environ Pollut ; 334: 122109, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379874

RESUMO

Parathion and diazinon are two significant organophosphorus pesticides broadly used in agriculture. However, these compounds are toxic and can enter into the environment and atmosphere via various processes. Herein, we synthesized and post-functionalized a porphyrinic covalent organic framework (COF), COF-366, with elemental sulfur under solvent-free conditions to give polysulfide-functionalized COF-366, namely PS@COF. The resulting material consisting of porphyrin sensitizer and sulfur nucleophilic sites was used as a dual-functional heterogeneous catalyst for the degradation of these organic compounds using visible-LED-light. Accordingly, the effects of several pertinent parameters such as pH (3-9), the catalyst dosage (5-30 mg), time (up to 80 min), and substrate concentration (10-50 mg L-1) were studied in detail and optimized. The post-modified COF showed excellent photocatalytic activity (>97%) in the detoxification of diazinon and parathion for 60 min at pH 5.5. Kinetic studies indicated a fast degradation rate with pseudo-second order model for 20 mg L-1 of diazinon and parathion. The total organic carbon detection and gas chromatography-mass spectrometry (GC-MS) confirmed the organic intermediates and byproducts formed during the process. PS@COF displayed good recyclability and high reusable efficiency for six cycles without a noteworthy lose in its catalytic activity, owing to its robust structure.


Assuntos
Estruturas Metalorgânicas , Paration , Praguicidas , Praguicidas/análise , Diazinon/química , Diazinon/metabolismo , Compostos Organofosforados/análise , Estruturas Metalorgânicas/química , Fotólise , Cinética , Metais , Enxofre
3.
J Chromatogr Sci ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37039288

RESUMO

In this research, an efficient, fast, low-cost and easy-to-use liquid-phase microextraction method was established to measure quercetin in onion and tomato before analysis by HPLC instrument. Herein, a rotatable central composite design-response surface methodology and artificial neural network were applied to model, optimize and predict the affecting factors on the microextraction procedure. Here, a minimal level of extractant was applied in the absence of a disperser. The cloudy state was formed by repeatedly suctioning and injecting the mixture of the aqueous solution and extractant with a glass syringe. Due to this procedure, a turbid solution composed of the very fine droplets of extractant dispersed in the aqueous solution was created, the contact surface was significantly enlarged and the quercetin was promptly extracted. The optimum values for the proposed method included 284 µL of 1-undecanol as the organic extractive solvent, pH of sample 3.3, the number of air injected nine times and speed and duration of centrifugation 4,000 rpm and 5 min. The linear range and detection of limit were achieved at 20-4,000 and 6 µg L-1, respectively. RSD% was obtained ˂4.93% (n = 5). This model was applied to monitor quercetin in tomato and onion samples.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770519

RESUMO

A porphyrin-based covalent organic framework (COF), namely Porph-UOZ-COF (UOZ stands for the University of Zabol), has been designed and prepared via the condensation reaction of 5,10,15,20-tetrakis-(3,4-dihydroxyphenyl)porphyrin (DHPP) with 1,4-benzenediboronic acid (DBBA), under the solvothermal condition. The solid was characterized by spectroscopic, microscopic, and powder X-ray diffraction techniques. The resultant multifunctional COF revealed an outstanding performance in catalyzing a one-pot tandem selective benzylic C-H photooxygenation/Knoevenagel condensation reaction in the absence of additives or metals under visible-LED-light irradiation. Notably, the catalytic activity of the COF was superior to individual organic counterparts and the COF was both stable and reusable for four consecutive runs. The present approach illustrates the potential of COFs as promising metal-free (photo) catalysts for the development of tandem reactions.

5.
Chem Soc Rev ; 51(18): 7810-7882, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35938695

RESUMO

Although C-H functionalization is one of the simplest reactions, it requires the use of highly active and selective catalysts. Recently, C-H-active transformations using porous materials such as crystalline metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) as well as amorphous porous-organic polymers (POPs) as new emerging heterogeneous catalysts have attracted significant attention due to their promising activity and potential material tunability. These porous solids offer exceptional structural uniformity, facile tunability and permanent porosity. In addition, tuning the catalytic selectivity of these porous materials can be achieved through engineering their site microenvironments, such as metal node substitution, linker changes, node/linker functionalization, and pore modification. The present review provides an overview of the current state of the art on MOFs, COFs and POPs as advanced catalysts for various C-H bond activation reactions, providing details about their chemo-, regio-, and stereo-selectivity control, comparing their performance with that of other catalysts, triggering additional research by showing the present limitations and challenges in this area, and providing a perspective for future developments.

6.
ACS Appl Mater Interfaces ; 14(32): 36515-36526, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35939817

RESUMO

Metal-organic frameworks (MOFs) and metal halide perovskites are currently under much investigation due to their unique properties and applications. Herein, an innovative strategy has been developed combining an iron-porphyrin MOF, PCN-222(Fe), and an in situ-grown CsCu2I3 nontoxic lead-free halide perovskite based on an earth-abundant metal that becomes incorporated within the MOF channels [CsCu2I3@PCN-222(Fe)]. Encapsulation was designed to decrease and control the particle size and increase the stability of CsCu2I3. The hybrid materials were characterized by various techniques including FE-SEM, elemental mapping and line scanning EDX, TEM, PXRD, UV-Vis DRS, BET surface area, XPS, and photoemission measurements. Hybrid CsCu2I3@PCN-222(Fe) materials were examined as heterogeneous multifunctional (photo)catalysts for copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) and one-pot selective photo-oxidation/Knoevenagel condensation cascade reaction. Interestingly, CsCu2I3@PCN-222(Fe) outperforms not only its individual components CsCu2I3 and PCN-222(Fe) but also other reported (photo)catalysts for these transformations. This is attributed to cooperation and synergistic effects of the PCN-222(Fe) host and CsCu2I3 nanocrystals. To understand the catalytic and photocatalytic mechanisms, control and inhibition experiments, electron paramagnetic resonance (EPR) measurements, and time-resolved phosphorescence were performed, revealing the main role of active species of Cu(I) in the click reaction and the superoxide ion (O2•-) and singlet oxygen (1O2) in the photocatalytic reaction.

7.
Chem Soc Rev ; 51(18): 8140, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36004669

RESUMO

Correction for 'Metal-organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C-H bond activation and functionalization reactions' by Saba Daliran et al., Chem. Soc. Rev., 2022, https://doi.org/10.1039/d1cs00976a.

8.
BMC Chem ; 16(1): 27, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35429981

RESUMO

BACKGROUND: A zirconium-based metal-organic framework (Zr-MOF), named MOF-808, was synthesized and fully characterized by solvo-thermal method and functionalized by isonicotinic acid and employed as an efficient adsorbent for selective extraction and preconcentration of uranyl ions from water and waste water samples in a batch solid phase extraction. RESULTS: Parameters affecting extraction such as volume and pH of the sample solution, the amount of sorbent, type and volume of eluting solvent, and adsorption and desorption times were investigated and optimized. Under the optimized conditions, high extraction efficiency was observed with a limit of detection of 0.9 µg L- 1 for uranyl ions and relative standard deviations were found to be better than 2.1% in the range of 0.07-1000 µg L- 1. CONCLUSIONS: These results indicated that the above procedure is fast, inexpensive, effective, reliable, applicable and organic solvent-free and showed the highly performance and stability of the Zr-MOF in SPE based analytical techniques.

9.
ACS Omega ; 5(21): 12202-12209, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548403

RESUMO

In this study, a novel porous hybrid material, poly(lauryl methacrylate) polymer-grafted UiO-66-NH2 (UiO = University of Oslo), was synthesized for efficient extraction of polycyclic aromatic hydrocarbons (PAHs) from aqueous samples. The polymer end-tethered covalently to the MOF's surface was synthesized by surface-initiated atom transfer radical polymerization, revealing a distinct type of morphology. The adsorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N2 adsorption-desorption analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The analyses were carried out by gas chromatography-mass spectrometry. Parameters including the type and volume of the eluent, the amount of the adsorbent, and adsorption and desorption times were investigated and optimized. Under optimal conditions, the limit of detection, intraday precision, and interday precision were in the range of 3-8 ng L-1, 1.4-3.1, and 4.1-6.5%, respectively. The procedure was used for analysis of PAHs from natural water samples.

10.
ACS Appl Mater Interfaces ; 12(22): 25221-25232, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32368890

RESUMO

This work reports the synthesis of pyridyltriazol-functionalized UiO-66 (UiO stands for University of Oslo), namely, UiO-66-Pyta, from UiO-66-NH2 through three postsynthetic modification (PSM) steps. The good performance of the material derives from the observation that partial formylation (∼21% of -NHCHO groups) of H2BDC-NH2 by DMF, as persistent impurity, takes place during the synthesis of the UiO-66-NH2. Thus, to enhance material performance, first, the as-synthesized UiO-66-NH2 was deformylated to give pure UiO-66-NH2. Subsequently, the pure UiO-66-NH2 was converted to UiO-66-N3 with a nearly complete conversion (∼95%). Finally, the azide-alkyne[3+2]-cycloaddition reaction of 2-ethynylpyridine with the UiO-66-N3 gave the UiO-66-Pyta. The porous MOF was then applied for the solid-phase extraction of palladium ions from an aqueous medium. Affecting parameters on extraction efficiency of Pd(II) ions were also investigated and optimized. Interestingly, UiO-66-Pyta exhibited selective and superior adsorption capacity for Pd(II) with a maximum sorption capacity of 294.1 mg g-1 at acidic pH (4.5). The limit of detection (LOD) was found to be 1.9 µg L-1. The estimated intra- and interday precisions are 3.6 and 1.7%, respectively. Moreover, the adsorbent was regenerated and reused for five cycles without any significant change in the capacity and repeatability. The adsorption mechanism was described based on various techniques such as FT-IR, PXRD, SEM/EDS, ICP-AES, and XPS analyses as well as density functional theory (DFT) calculations. Notably, as a case study, the obtained UiO-66-Pyta after palladium adsorption, UiO-66-Pyta-Pd, was used as an efficient catalyst for the Suzuki-Miyaura cross-coupling reaction.

11.
BMC Chem ; 14(1): 19, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32206761

RESUMO

In this paper, we describe synthesis and application of an iron porphyrinc metal-organic framework PCN-222(Fe) for solid phase extraction of aspartame, an artificial non-saccharine sweetener, from gum, juice and diet soft drink samples prior to its determination by spectrophotometry. The mesoporous MOF was synthesized solvo-thermally and characterized by Fourier transform-infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller techniques. To obtain the best extraction efficiency of aspartame, significant affecting parameters such as pH of sample solution, amount of the sorbent, type and volume of eluting solvent, and adsorption and desorption times were investigated and optimized. Under optimum conditions, the calibration graph for aspartame was linear in the range of 0.1 to 100.0 mg.L-1 and relative standard deviation of aspartame was 1.7% (n = 7). Limit of detection of method calculated as 0.019 mg.L-1 and the enrichment factor of 350 folds was obtained. Adsorption capacity of synthesized sorbent was found to be 356 mg.g-1. Hierarchical porosity, the eight terminal-OH groups of the Zr6 node, and hydrogen bonding possibly play vital role for selective adsorption of aspartame. The optimized method was successfully applied to the determination of aspartame in real samples with reasonable recoveries (> 98%).

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 234: 118270, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32203685

RESUMO

In this study, a new efficient adsorbent of Co-Fe-layered double hydroxides@metal-organic framework (Co-Fe-LDH@UiO-66-NH2) was synthesized and used for extraction of methylene blue (MB) and methylene red (MR) from water samples prior to their determination by UV-Vis spectrophotometer. The adsorbent was characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray (EDX), X-ray Diffraction (XRD), and Brunauer-Emmett-Teller (BET) analyses. The impact of various parameters such as pH of the aqueous phase, extraction time, amount of adsorbent, type and volume of eluent solvent, desorption time, and sample volume were studied. The maximum extraction recovery was obtained at an optimized pH 8.0 and extraction time 10.0 min. The adsorption process was fitted by the Langmuir model with a maximum adsorption capacity of 555.62 mg/g and 588.2 mg/g, respectively, for MB and MR. Under optimum conditions, the limit of detection (LOD) for MB was 0.7 µgL-1 and 0.9 µgL-1 for MR. Furthermore, the Co-Fe-LDH@UiO-66-NH2 composite showed high efficiency for the removal of the analytes from environmental water samples.

13.
Fish Physiol Biochem ; 46(2): 547-561, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32002716

RESUMO

The objective of the present study was to investigate the effects of dietary supplementation with zinc oxide (ZnO) and chitosan-zinc nanoparticles (chitosan-ZnO NPs) on biochemical, immunological, and antioxidant biomarkers in blood of juvenile belugas (Huso huso). The beluga juveniles with initial weight of 287 ± 46 g were fed with eight experimental diets containing 0 g kg-1 ZnO (the control diet); 10, 20, and 40 mg kg-1 ZnO; and 10, 20, and 40 mg kg-1 chitosan-ZnO NPs and 36 mg kg-1 chitosan. After 28 days of culture, the fish were fed with ZnO and chitosan-ZnO NP-supplemented diets showed a more significant increase in total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activity (p < 0.05) compared to the control group. There were no significant differences (p > 0.05) in malondialdehyde (MDA) and glucose level in all treatment groups. The results showed that with increasing levels of ZnO and chitosan-ZnO NPs, alternative complement activity (ACH50), and total immunoglobulin, total protein, albumin, and lysozyme had a significant increase in fish fed with ZnO and chitosan-ZnO NP-supplemented diets compared to the control group (p < 0.05). ALP, ALT, and AST enzyme activities showed significant difference between control and treatment groups (p > 0.05), while the levels of LDH enzyme activity, urea, and creatinine decreased by increasing both ZnO and chitosan-ZnO NP levels. These results demonstrated that dietary chitosan-ZnO NPs could improve the health status, immune function, and antioxidant capacity of the cultured beluga juvenile.


Assuntos
Suplementos Nutricionais , Peixes/fisiologia , Óxido de Zinco , Ração Animal , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Quitosana , Dieta , Gelatina , Glutationa Peroxidase , Testes Hematológicos , Malondialdeído , Nanopartículas , Superóxido Dismutase , Zinco
14.
Mol Divers ; 24(2): 335-344, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31062142

RESUMO

New trans-A2B2-porphyrins substituted at phenyl positions were synthesized from 4-methylphthalic acid as a starting material through sequential multistep reactions. These macrocycles were characterized by 1H NMR, 13C NMR, 19F NMR, 1H-1H COSY NMR, and MALDI-TOF mass spectrometry. Computational studies were performed on the porphyrins to investigate various factors such as structural features, electronic energy, energy gaps, and aromaticity. Energy band gap values of these compounds especially N-hydroxyphthalimide-functionalized porphyrins were small that makes them as good candidates for solar cell systems and photocatalysis. Relationships between electronic energies and aromaticity of the compounds were then investigated. The data indicated that the aromaticity features at the center of two series of these compounds (fluorinated and non-fluorinated porphyrins) were in the opposite manner.


Assuntos
Ftalimidas/química , Porfirinas/química , Modelos Moleculares
15.
J Colloid Interface Sci ; 561: 782-792, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31761467

RESUMO

A novel MIL-101(Cr) (MIL, Matérial Institut Lavoisier) supported propyl carboxylic acid, denoted here as MIL-101(Cr)-NH-CO-Pr-COOH, has been fabricated by post-synthetic modifications of nitro-functionalized MIL-101(Cr), MIL-101(Cr)-NO2. The resulting MOF was successfully characterized by using FT-IR, XRD, N2 adsorption-desorption, 1H NMR, SEM, ICP-OES, elemental analysis and TGA. Then, the prepared solid was used as an extremely highly effective multifunctional catalyst for the one-pot three-component synthesis of quinazolin-4(1H)-one derivatives as biologically active nitrogen heterocyclic compounds under solvent-free conditions. The important features of this methodology are good to excellent yields of products, the use of very small amounts of catalyst, short reaction time, non-requirement of organic solvents, and environmental benign and mild reaction conditions. Furthermore, turnover frequency was found to be in the range 3.5-50 h-1 under neat conditions, which is comparable to the reported previously for this reaction. Significantly, compared with the pristine MOF and the related homogenous catalysts, the MIL-10 1(Cr)-NHCO-Pr-COOH exhibited superior catalytic activity which can be attributed to the synergistic effect between isolated Lewis acidic Cr(III) nodes and Brønsted acidic free COOH groups in addition to the cooperative interplay of the Brønsted acid and the amine sites within the framework. More remarkably, MOF was stable and reusable up to three times without any changes in its activity and structure.

16.
J Colloid Interface Sci ; 535: 214-226, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30293047

RESUMO

A bioinspired iron(III)porphyrinic Zr-MOF, PCN-222(Fe), was modified by post-synthetic cluster metalation with iron(III) chloride, as a cheap, earth-abundant, and environmentally friendly metal precursor, towards formation a new multifunctional MOF, namely Fe@PCN-222(Fe). The MOF consists of bimetallic (Zr-oxo-Fe) nodes linked by Fe(III)porphyrin struts. The cluster metalation and pre-activation treatment of PCN-222(Fe) were performed cooperatively using the FeCl3. The respective MOF was characterized through various techniques, such as FT-IR, PXRD, ICP-AES, BET surface area, SEM, UV-Vis DRS, TGA/DSC, PL, and XPS analyses. The solid showed catalytic activity for one-pot tandem synthesis of quinazolin-4(3H)-ones from alcohols and 2-aminobenzamide through a three-consecutive-step reaction (oxidation-cyclization-oxidation) under visible light irradiation using air or oxygen without adding any additive. In addition, its catalytic performance was superior to that of the bare PCN-222(Fe) and the corresponding homogeneous catalysts. The experiments indicate that the solid MOF acts as both a photoredox and Lewis acid catalyst. Hot-filtration and Fe-leaching tests as well as reusability experiments confirm that the nominal MOF acts as an efficient reusable heterogeneous catalyst for at least three runs without significant decrease in its activity. This work demonstrates the potential of using MOFs as supports for single-site metal species towards preparation of multifunctional MOFs for modern organic transformations combining photocatalysis and catalysis.

17.
Mikrochim Acta ; 185(10): 469, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232647

RESUMO

An amino-functionalized zirconium metal-organic framework was composed with a 3D urea-based porous organic polymer to give a hybrid material termed UiO-66-NH2/urea-POP. The material was characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller surface area measurements. It is shown to be a viable sorbent for solid-phase extraction of uranium from water samples. Parameters such as the pH value of the sample, amount of adsorbent, type and volume of eluent, adsorption and desorption time, and sample volume were optimized. Uranyl ion was quantified by using UV-vis spectrophotometry by using 1-(2-pyridyl-azo)-2-naphthol as the indicator. Figures of merits include (a) a maximum sorption capacity of 278 mg g-1; (b) a detection limit of 0.6 µg L-1; and (c) intra-day and inter-day precisions (for n = 5 at a concentration of 100 µg L-1) of 4.8 and 1.9%, respectively. The sorbent can be recycled, and no significant change was observed in the capacity and repeatability of the sorbent after seven extractions. The high surface area, metal-binding sites, and stability of the sorbent makes it a most viable tool for efficient and fast extraction and removal of uranium. Graphical abstract Schematic of a new porous hybrid solid, referred to as UiO-66-NH2/urea-POP. It combines a zirconium-based metal-organic framework and a urea-based porous organic polymer. It is shown to be a highly efficient sorbent for solid-phase extraction of uranium(VI) prior to its spectrophotometric determination.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 205: 200-206, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30015026

RESUMO

A 3D urea-based porous organic polymer (Urea-POP) was prepared via the reaction of tetrakis(4-aminophenyl)methane and 1,4-Phenylene diisocyanate. The polymer was subsequently reacted with 2D layered nanosheets of graphene oxide (GO) to prepare Urea-POP/GO as a novel and highly efficient sorbent for pre-concentration and extraction of serum albumin samples, prior to spectrophotometric determination. The hybrid material combines advantages of both POP and GO such as hydrophilicity, high dispersion stability, porosity, and having a large number of nitrogen- and oxygen-containing functional groups. Parameters which influence the extraction efficiency such as the amount of the adsorbent, pH of sample solution, ionic strength, adsorption and desorption time were investigated and optimized. For the method, detection limit of 0.068 mg L-1 and determination coefficient (R2) of 0.9991 were obtained. The intra- and inter-day was calculated with five replicates in the same day and seven consecutive days, respectively. Intra-day and inter-day precisions were 1.7% and 5.9%, respectively. The maximum sorption capacity was 357.1 mg g-1, which is higher than the other reported sorbents. The proposed method was demonstrated to be sensitive enough for determination of serum albumin from bio-samples.


Assuntos
Grafite/química , Polímeros/química , Soroalbumina Bovina/isolamento & purificação , Espectrofotometria/métodos , Ureia/química , Calibragem , Concentração de Íons de Hidrogênio , Limite de Detecção , Modelos Lineares , Óxidos , Reprodutibilidade dos Testes , Soroalbumina Bovina/análise , Extração em Fase Sólida
19.
Artigo em Inglês | MEDLINE | ID: mdl-29331822

RESUMO

In this study, a zirconium-based metal-organic framework (Zr-MOF), named UiO-66-OH, was synthesized by the solvo-thermal method and characterized by Fourier transform-infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). This Zr-MOF was then employed as a sorbent for selective extraction and preconcentration of thorium ions after their complexation with 2­(2,4­dihydroxyphenyl)­3,5,7­trihydroxychromen­4­one (morin) from environmental water samples prior to its spectrophotometrical determination. The experimental parameters affecting extraction, such as pH of sample solution, amount of Zr-MOF, type and volume of eluting solvent, adsorption and desorption time, and concentration of complexing agent were evaluated and optimized. Under the optimized conditions, an enrichment factor of 250 was achieved. The limit of detection was calculated to be 0.35µg·L-1 with a linear range between 10 and 2000µg·L-1of thorium. The maximum sorption capacity of MOF toward thorium was found to be 47.5mg·g-1. The proposed procedure was successfully applied to the analysis of real water samples.

20.
J Sci Food Agric ; 97(5): 1517-1523, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27404217

RESUMO

BACKGROUND: A novel technique using maghemite nanoparticle-decorated hollow fibers to assist electromembrane extraction is proposed. Electromembrane extraction combined with dispersive liquid-liquid microextraction (EME-DLLME) was applied for the extraction of thymol from Carum copticum, followed by gas chromatography with flame ionization detection (GC-FID). RESULTS: The use of maghemite nanoparticle-decorated hollow fibers was found to improve the extraction efficiency of thymol significantly. Important operational parameters, including pH of acceptor phase, extraction time, voltage and temperature, were investigated and optimized. At the optimal conditions, linearity in the range 4-1800 µg L-1 with a determination coefficient of 0.9996 was obtained. The limit of detection was 0.11 µg L-1 (S/N = 3) and the pre-concentration factor was 200. The intra- and inter-day precision was 5.9 and 2.2% respectively. The intra- and inter-day accuracy was higher than 93.6%. CONCLUSION: The results indicated that EME-DLLME/GC-FID is a useful technique for the extraction and determination of thymol in C copticum. © 2016 Society of Chemical Industry.


Assuntos
Carum/química , Técnicas Eletroquímicas/métodos , Microextração em Fase Líquida/métodos , Nanopartículas de Magnetita/química , Timol/isolamento & purificação , Cromatografia Gasosa , Ionização de Chama , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...